Electrochemical Decoration of Carbon Nanotubes with Au Nanostructure for the Electroanalysis of Biomolecules.

نویسندگان

  • Ashok Kumar Das
  • C Retna Raj
چکیده

An electrochemical route for the decoration of multiwalled carbon nanotubes (MWCNTs) with anisotropic Au nanostructures and the electroanalytical application of decorated MWCNTs are described. MWCNTs were electrochemically decorated with flowers and buds-like Au nanostructures in aqueous solution in the presence of KI. The flowers and buds-like nanostructures had an average size of 80 nm with a predominant Au(111) plane. The analytical application of the decorated MWCNTs in the electroanalysis of biologically important analytes, such as uric acid (UA), epinephrine (EN) and ascorbic acid (AA), was studied. The nanoparticles of flower-like morphology efficiently catalyze the oxidation of the bioanalytes at a less-positive potential. Simultaneous electroanalysis of AA, UA and EN have been achieved. Well separated individual voltammetric peaks were obtained in their coexistence. The decorated MWCNT modified electrode is very stable and highly sensitive towards UA and EN. It could detect micromolar levels of bioanalytes without any interference. The catalytic property of the nanostructures is superior to that of the conventional spherical nanoparticle. The morphology of the nanoparticle controls the electrocatalytic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon-based electrode materials for DNA electroanalysis.

This review addresses recent studies of newly developed carbon-based electrode materials and their use for DNA electroanalysis. Recently, new carbon materials including carbon nanotubes (CNT), graphene and diamond-based nanocarbon electrodes have been actively developed as sensing platforms for biomolecules, such as DNA and proteins. Electrochemical techniques using these new material-based ele...

متن کامل

Determination of epinephrine in the presence of uric acid and folic acid using nanostructure-based electrochemical sensor

Fabrication and electrochemical characterization of a sensor for the determination of epinephrine (EP), uric acid (UA) and folic acid (FA) is described. The sensor  was prepared using carbon paste electrode (CPE) modified with 3,4-dihydroxybenzaldehyde-2,4-dinitrophenylhydrazone (DDP) and carbon nanotubes (CNTs), which makes the modified electrode highly sensitive for the electrochemical detect...

متن کامل

Development of Pt-Au-Graphene-Carbon nanotube composite for fuel cells and biosensors applications

This project addresses the architectures needed for the processing of Pt-Au-graphene-carbon nanotube (Pt-Au/f-G/f-CNT) nanocomposites and aims at the investigation of suitability of these nanocomposites for the hydrogen and alcohol based fuel cells and to develop novel electrocatalysts for fuel cells. The project also aims at the detection of specific biomolecules in order to develop electroche...

متن کامل

Preparation of thiolated polymeric nanocomposite for sensitive electroanalysis of dopamine.

We report on the thiol-ene chemistry guided preparation of novel thiolated polymeric nanocomposite films of abundant anionic carboxylic groups for electrostatic enrichment and sensitive electroanalysis of cationic dopamine (DA) in neutral solution. Briefly, the thiol-ene nucleophilic reaction of a carboxylated thiol with oxidized polypyrrole (PPy), which was electrosynthesized on an Au electrod...

متن کامل

Nickel Oxide/Carbon Nanotubes as Active Hybrid Material for Oxygen Evolution Reaction

Carbon nanotubes are of great interest due to their high surface area and rich edge sites, which are favorable for wide applications. Here, a simple and efficient routine is presented by decoration of multi-wall carbon nanotube (MWCNT) with nickel oxide (NiO) nanoparticles.The morphologies of NiO-MWCNT  were  investigated  by  using scanning  electron  microscope  (SEM)  and energydispersive X-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 31 7  شماره 

صفحات  -

تاریخ انتشار 2015